
 1

Documentation of the BEMCmpMgr (CEC Compliance Manager) DLL
For Analysis of Commercial Buildings

SAC 7/6/2016 (v14) (latest changes in Red font)

The purpose of this document is to provide information needed to develop software interfaces to the CEC
Compliance engine DLL(s). The primary library third party tools will interface with is BEMCmpMgr_os.dll for
2013 analysis and BEMCmpMgr16_os.dll for 2016. This DLL manages the compliance analysis processing,
including:

 Evaluation of compliance rules on user input building models (via BEMProc.dll 2013 or BEMProc16.dll
2016),

 Simulation of the proposed and standard building models (via OpenStudio/EnergyPlus), and

 Generation of compliance reports (informal reports internal to compliance manager, certified reports via
web-based report generator).

Ultimately, the analysis engine DLLs will have only open source dependencies (primarily boost, Qt C++, OpenSSL,
cURL (likely to be phased out of future releases) and OpenStudio libraries), but for the time being there are still
dependencies on Microsoft (Windows) libraries. As of the release of version 3a in late November 2014, the
Windows dependencies include both Visual Studio 2008 & 2013 redistributables (2013 for OpenStudio, CBECC-
Com and the compliance manager and 2008 for some other libraries). We anticipate some, but not substantial,
changes to the software interfacing routines documented here as we migrate the compliance manager toward
open source dependencies in the coming months.

There are only a handful of exports needed to perform compliance analysis and retrieve analysis results/reports.
One initializes the DLLs, one performs the analysis (and potentially generates a report), another to generate a
draft report from an existing analysis results file, three more are designed to retrieve data (inputs and/or
results) from the building model following analysis, a couple more to retrieve error messages and the last is used
to clean-up following exit.

The overall analysis data model is broken into a few subsets, one of which is the “Input Data Model”. This is the
version of most interest to third party tools wishing to generate files that can be analyzed for compliance using
this tool. The Input Data Model is documented in a text file contained in each release of CBECC-Com, residing in
the “Data” directory of the install, at:
 2013: <CBECC-Com xxx Data>\Documents\RulesetSource\CEC 2013 NonRes - Input Data Model.txt
 2016: <CBECC-Com xxx Data>\Documents\RulesetSource\CEC 2016 NonRes - Input Data Model.txt

There is one variation associated with the input data model that is important to understand, and that has to do
with the ability to describe buildings using either “Detailed” or “Simplified” geometry. There are certain
limitations on building and analysis features when using the simplified approach, while any/all features and
analysis can be performed on detailed geometry projects. For more information on this topic, refer to the
CBECC-Com User’s Manual.
A new feature of the Input Data Model text file is the ability to specify whether or not certain building object
properties should or should not be included in detailed vs. simplified building model files submitted for analysis.
This is denoted in the highlighted excerpt from the Input Data Model text:

Spc Space #Props:109/340 MaxDefinable: 1000

 Parent(s): Story

 Children: IntLtgSys / DayltgCtrl / Ceiling / ExtFlr...

 ...

 Area ... Float ... Units: ft2 ... (see next line) Error if not: Value >= 0.01

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 2

 Compulsory when Proj:GeometryInpType = 'Simplified', else NotInput

One data model variation that is NOT documented in the Input Data Model text file (described above) is the
inclusion of PolyLp (PolyLoop) objects in project files. Detailed geometry projects should include PolyLp children
for Spc (Space) objects and all types of surfaces & shading devices (Ceiling, ExtFlr, ExtWall, IntFlr, IntWall, Roof,
UndgrFlr, UndgrWall, Win, Skylt, Dr & ExtShdgObj). Simplified geometry projects should include NO PolyLp
objects. If PolyLp objects are included in simplified geometry projects, they will be removed and not considered
during analysis.

Recommended sequence of events (assuming use of Visual Studio & C++) for a scenario where direct linking to
the compliance manager DLLs is not required:

1. Load the pertinent DLLs via LoadLibrary() -->> "libeay32.dll", "ssleay32.dll", "QtCore5.dll", "QtXml5.dll",
"QtGui5.dll", and for 2013: "BEMProc.dll" and "BEMCmpMgr_os.dll" or for 2016: "BEMProc16.dll" and
"BEMCmpMgr16_os.dll"
This step MAY not be required if the third party application and these referenced DLLs are located in the
same directory.

2. Call GetProcAddress() to retrieve function pointers to each DLL function you plan to call.

3. Call InitBEMProcAndCmpMgrDLLs() to initialize the BEMProc(16) & BEMCmpMgr(16)_os DLLs with
the desired building data model.

4. For each building model to be simulated:
- Call CMX_PerformAnalysis_CECNonRes() to perform the compliance analysis.
- Call CMX_GenerateReport_CEC() to generate a PDF compliance report based on the results
contained in an XML file identified by the calling application.
- Call CMX_GetDataString(), CMX_GetDataInteger(), &/or CMX_GetDataFloat() any number
of times to retrieve building model inputs, calculated defaults or simulation results (anything stored in
the building model).
- Call CMX_GetRulesetErrorCount() to retrieve the number of errors encountered during the
analysis and CMX_GetRulesetErrorMessage() to retrieve individual error message character strings.
- Call CMX_ExportCSVHourlyResults_CECNonRes() to export a CSV file containing hourly
simulation results and TDV multipliers for a single analysis run (proposed vs. standard).

5. Call ExitBEMProcAndCmpMgrDLLs() following all simulations to clean-up BEMProc(16) &
BEMCmpMgr(16)_os data.

6. Unload the loaded DLLS (in reverse order) via FreeLibrary() -->> for 2013: "BEMCmpMgr_os.dll" &
"BEMProc.dll" or for 2016: "BEMCmpMgr_os.dll" & "BEMProc.dll" followed by "QtGui5.dll",
"QtXml5.dll", "QtCore5.dll", "ssleay32.dll", and "libeay32.dll"
This step not required if the third party DLLs are not explicitly loaded in step 1.

Function Reference

The following are names and documentation pertaining to the compliance manager routines referenced above

void InitBEMProcAndCmpMgrDLLs(const char* psBEMProcFileName,

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 3

 int iBEMType,

 const char* psInitLogFileName);

// typedef void (__cdecl *PInitBEMProcAndCmpMgrDLLs)(const char*, int,

// const char*);

 // _InitBEMProcAndCmpMgrDLLs

 (note: No longer using mangled names as of version 1c (500) / v2 of this document)

where:

 psBEMProcFileName is a null terminated string containing the path and filename of the data model
definitions file. In the CBECC-Com installer, this would be: ‘<Data directory>\Rulesets\CEC 2013
Nonres\CEC 2013 NonRes BEMBase.bin’.

 iBEMType is an enumeration describing the data model type. For CBECC-Com (or -Res) processing this
should be set to 0.

 psInitLogFileName is a null terminated string containing the path and filename of a file used to log
messages. This is something that gets re-set with each project file read, so we tend to ignore this –
passing in NULL for this argument.

Call this routine once following the loading of the BEMProc & BEMCmpMgr_os DLLs.

note – all path/filename arguments can be either complete or relative to the path in which the calling
executable resides.

int CMX_PerformAnalysis_CECNonRes(const char* pszBEMBasePathFile,

 const char* pszRulesetPathFile, const char* pszSimWeatherPath,

 const char* pszCompMgrDLLPath, const char* pszDHWWeatherPath,

 const char* pszProcessingPath, const char* pszModelPathFile,

 const char* pszLogPathFile, const char* pszUIVersionString,

 bool bLoadModelFile, const char* pszAnalysisOptionsCSV,

char* pszErrorMessage, int iErrorMsgLength,

bool bDisplayProgress, HWND hWnd,

char* pszResultsSummary, int iResultsSummaryLen);

 // typedef int (__cdecl *PCMX_PerformAnalysis_CECNonRes)(const char*,

// const char*, const char*, const char*,

// const char*, const char*, const char*,

// const char*, const char*, bool,

// const char*, char*, int, bool, HWND, char*, int);

// _CMX_PerformAnalysis_CECNonRes

where:

 pszBEMBasePathFile is a null terminated string containing the path and filename of the data model
definitions file. This should not be specified (pass in NULL) unless the run being performed uses a
different data model as the one previously used to initialize the DLLs or perform a simulation.

 pszRulesetPathFile is a null terminated string containing the path and filename of the ruleset file used
to process the building model. This should be specified for each run when switching building models, as
it re-initializes both the building model and ruleset data. In the CBECC-Com installer, this would be:
‘<Data directory>\Rulesets\CEC 2013 NonRes.bin’ for 2013 or ‘<Data directory>\Rulesets\CEC 2013
NonRes.bin’ for 2016 analysis.

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 4

If a simulation is to be performed on a building model already loaded into memory, then you can specify
NULL for this argument.

 pszSimWeatherPath is a null terminated string containing path (including trailing ‘\’) of the directory
where the EnergyPlus CEC weather files reside. The default CBECC-Com installer location for these files
is: ‘<Data directory >\EPW\’.

 pszCompMgrDLLPath is a null terminated string containing path (including trailing ‘\’) of the directory
where the CEC compliance manager DLLs reside. If NULL or a zero-length path is specified for this
argument, then the path to the executable file which loaded & called this analysis routine will be used.
The analysis mechanism assumes that other required executables are located as follows in relation to
the directory identified by this argument:
 - EnergyPlus simulation executable & DLLs located in ‘EPlus\’ subdirectory, and
 - CSE engine executable and ASHWAT.dll located in ‘CSE\’ subdirectory (used for residential water htg).

 pszDHWWeatherPath is a null terminated string containing path (including trailing ‘\’) of the directory
where the CEC DHW simulation weather files reside. In the CBECC-Res installer, this would be:
‘<Program directory>\CSE\’.
This argument is NOT YET IMPLEMENTED and should always be NULL (for the time being). The DHW
simulation engine IS currently compatible with TMY(2) files, but the BEMCmpMgr_os interface to the
DHW engine is currently available only for the California Climate Zones.

 pszProcessingPath is a null terminated string containing the path (including trailing ‘\’) of the directory
where the simulation inputs and outputs will be written.

 pszModelPathFile is a null terminated string containing the path and filename of the building model
input (.cibd or .xml) file. The model input file identified by this argument may or may not be loaded into
memory during the analysis processing depending on a subsequent argument.

 pszLogPathFile is a null terminated string containing the path and filename of a file to write processing
messages to. If specified as NULL (which it typically is), then the log file will be equivalent to the
pszModelPathFile specified in the previous argument, but with the file extension replaced with ‘.log’.

 pszUIVersionString is a null terminated string containing the name and version/ID of the application
that is calling this function. This information is stored in the data model for later reporting in results
export and final compliance reports.

 bLoadModelFile is a boolean indicating whether or not to read the building model (pszModelPathFile)
into memory prior to analysis. This should be specified as ‘true’ (non-zero) unless the calling application
has already loaded the building model into memory via a previous call.

 pszAnalysisOptionsCSV is a null terminated, comma separated value (CSV) formatted string defining
any/all of the following analysis options:

o StoreBEMDetails: boolean (0/1 – default 0): whether or not to store detailed building energy
model (‘.ibd-detail’) files during the course of the model defaulting and analysis. Typically set to
1 in testing/debugging phases and turned off (value of 0, the default) for distribution to users
(reducing processing time and file I/O).

o Verbose: boolean (0/1 – default 0): whether or not to write messages to the log file for each
rule evaluated on the model and identifying each step in the analysis sequence. Typically set to
1 in certain testing/debugging phases and turned off (value of 0, the default) for distribution to
users (reducing processing time and file I/O – can result in very large analysis log files).

o Silent: boolean (0/1 – default 0): whether or not dialog boxes are permitted to be presented
during the analysis. One example is a dialog indicating that a file needing to be written
during/following the analysis cannot be written to, prompting the user to close the file in

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 5

another application it is opened in so that the file can be re-written. A value of ‘1’ will prevent
user prompts and issues such as files unable to be written may cause the analysis to be aborted.

o PromptUserUMLHWarning: boolean (0/1 – default 0): whether or not to prompt user with a
dialog following simulation of the Proposed model if any thermal zones are found to exceed the
unmet load hour (UMLH) limits as prescribed in the compliance ruleset. The dialog looks like
this:

where the “Click here…” link opens the CBECC-Com HVAC FAQ page at the UMLH section in the
user’s default web browser.

o WriteUMLHViolationsToFile: boolean (0/1 – default 1): whether or not to write a text file with
details of any Proposed model unmet load hours (similar to the information provided in the
above dialog). If selected, this information is written to the file:
 <Input file path>\<Input filename> - UMLH Zones.txt

o QuickAnalysis (-1/0/1 – default -1): whether to perform QuickAnalysis, processes much faster
but may vary from the results of a full annual analysis and therefore cannot be used to generate
final compliance documentation. There is no difference in the sizing simulations, but annual
simulations consist of 4 1-week run periods, one period simulated in each season of the year.
Values of 0/1 will override the QuickAnalysis setting defined in the model input data and the
default value of -1 will activate QuickAnalysis only if specified in the model.

o ParallelSimulations: boolean (0/1 – default 1): whether or not simulations should be grouped by
type (sizing vs. annual) and performed at the same time (in parallel). This feature has been
shown to reduce the overall analysis duration by 30-40% (depending on model details). This
feature can be toggled off by specifying a ‘0’ for this analysis option.

o LogWritingMode: integer (0-2 – default 2): the method used to write messages to project log
files.

0. log file flushed and closed following each write (slower, but ensures complete log file)
1. log file populated in memory and only flushed/refreshed periodically (faster writing)
2. causes use of method '1' if any detailed logging activated (when VerboseInputLogging,

LogRuleEvaluation, or DebugRuleEvalCSV are specified), otherwise '0'

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 6

o AnalysisThruStep: integer (0-100 – default 100): an indication of the last analysis step to be
executed before aborting the analysis. Steps of the analysis (and their corresponding integer
values) include:

1. Analysis initialization (DEFAULT/CHECKSIM/CHECKCODE rules)
2. Prepare Proposed & Baseline Sizing models (if applicable)
3. Generate Proposed & Baseline Sizing model OSM (OpenStudio Model) and IDF

(EnergyPlus Input) files (if applicable)
4. Simulate Proposed & Baseline Sizing models and retrieve results (possible iteration of

sizing runs)
5. Generate Annual Proposed & Baseline models
6. Generate Annual Proposed & Baseline model OSM (OpenStudio Model) and IDF

(EnergyPlus Input) files
7. Simulate Annual Proposed & Baseline models, retrieve results and perform UMLH

(unmet load hours) check
8. Generation of compliance report

o DontAbortOnErrorsThruStep: integer (0-100 – default 0): an indication of how far the analysis
sequence (based on the steps listed above) should be executed, regardless of the number or
types of errors encountered through that point.

o BypassInputChecks: boolean (0/1 – default 0): whether or not numeric range and required input
checks should be bypassed during the course of performing the analysis. This is typically
activated (set to 1) only when performing software testing/debugging and a certified
compliance report cannot be generated when set to 1.

o BypassUMLHChecks: boolean (0/1 – default 0): whether or not UMLH (unmet load hour) checks
should be bypassed during the course of performing the analysis. This is typically activated (set
to 1) only when performing software testing/debugging and a certified compliance report
cannot be generated when set to 1.

o BypassCheckSimRules: boolean (0/1 – default 0): whether or not CheckSim rules (designed to
ensure that the building model as input can be simulated) should be bypassed during the course
of performing the analysis. This is typically activated (set to 1) only when performing software
testing/debugging and a certified compliance report cannot be generated when set to 1.

o BypassCheckCodeRules: boolean (0/1 – default 0): whether or not CheckCode rules (designed to
ensure that mandatory code requirements are present in the building model) should be
bypassed during the course of performing the analysis. This is typically activated (set to 1) only
when performing software testing/debugging and a certified compliance report cannot be
generated when set to 1.

o BypassOpenStudio_zp / BypassOpenStudio_zb / BypassOpenStudio_ap / BypassOpenStudio_ab:
boolean (0/1 – default 0): whether or not OpenStudio (and the EnergyPlus simulation) is to be
bypassed for the proposed sizing (‘_zp’), baseline sizing (‘_zb’), proposed (‘_ap’) and/or baseline
(‘_ab’) models. This is typically activated (set to 1) only when performing software
testing/debugging and a certified compliance report cannot be generated when set to 1.

o OverrideAutosize_zp / OverrideAutosize_bz / OverrideAutosize_ap / OverrideAutosize_ab:
integer (-1/0/1 – default -1): whether to force the simulation to automatically size (autosize) the
HVAC equipment (‘1’), to not autosize the equipment (‘0’) or to simulate using the default
autosizing setting (‘-1’ => off for Annual Proposed & Baseline, on for Proposed & Baseline
Sizing). This is typically activated (set to 0 or 1) only when performing software

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 7

testing/debugging and a certified compliance report cannot be generated when set to a value
other than -1.

o IgnoreFileReadErrors: boolean (0/1 – default 0): whether or not the analysis should ignore
(continue analysis following) errors encountered when reading and parsing the input building
model.

o PurgeUnreferencedObjects: boolean (0/1 – default 1): whether or not purge (delete) building
objects from the model that have no effect on the analysis during the early stages of rule
processing.

o EnableRptGenStatusChecks: boolean (0/1 – default 1): whether or not to check for report
generator website access prior to initiating report generation.
This feature is known to have problems in some network/proxy server scenarios, in which case it
is important to disable this option in order to ensure that reports are generated.

o ComplianceReportPDF: boolean (0/1 – default 0): whether or not a PDF compliance report will
be generated at the conclusion of the analysis, assuming no errors have occurred and no checks
or simulation runs were bypassed. In the event a compliance PDF is generated, the file will be
located in the project directory and named:
 <project file name> - AnalysisResults-BEES.pdf
This option can also be toggled on by setting Proj:CompReportPDF to ‘1’ in the input building
model.

o ComplianceReportXML: boolean (0/1 – default 0): whether or not a full (XML) compliance
report will be generated at the conclusion of the analysis, assuming no errors have occurred and
no checks or simulation runs were bypassed. Full XML compliance reports include all analysis
inputs and results as well as an imbedded PDF report. In the event a XML compliance report is
generated, the file will be located in the project directory and named:
 <project file name> - AnalysisResults-BEES.xml
This option can also be toggled on by setting Proj:CompReportXML to ‘1’ in the input building
model.

o CompReportWarningOption: integer (0-5 – default 0): determines whether the analysis is to be
aborted in cases where a compliance report is selected for output but either the report
generator is not available or there are project or analysis settings that would cause the report to
be watermarked (and therefore could not serve as compliance documentation). This value also
determines whether or not a dialog is presented by the compliance engine enabling the user to
continue or abort the analysis when these situations are encountered. Options include:

0. No user prompt - continue analysis regardless of compliance report issues
1. No user prompt - abort analysis of report generation is not available and continue analysis

if report is available but will be watermarked
2. No user prompt - abort analysis if either report generation is unavailable or the report will

be watermarked
3. Prompt user when report generation is not available and continue analysis without

prompting user if the report will be watermarked
4. Abort analysis with no user prompt if report generation is not available and prompt user if

the report will be watermarked
5. Prompt user if either report generation is not available or if the report will be

watermarked

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 8

Here is an example of how the warning dialog from the compliance engine looks:

o SimulationStorage: integer (0-7 – default 1): determines which, if any, simulation input and/or

output files are to be retained following each building model simulation. Valid options include:
0. ALL simulation sub-directories and files deleted
1. Only the input (.idf) files are retained
2. (#1 above) + summary output (.htm) retained
3. (#2 above) + limited additional output (.csv|.eio|.err|.rdd) retained
4. (#3 above) + SQL output (.sql) retained
5. (#3 (not 4) above) + both SQL & other standard output files retained
6. (#4 & 5 above) +
7. ALL simulation input and output files retained

o AnalysisStorage: integer (0-3 – default 2): determines which, if any, (non-simulation) files
generated during analysis are to be retained following each round of analysis. Valid options
include:

0. ALL analysis files deleted
1. Only simulation SDD XML (.xml) files are retained
2. (#1 above) + OpenStudio model (.osm) files are retained
3. ALL files produced during analysis are retained

o ExportHourlyResults: a series of integer options that will cause the export of 1-2 hourly results
CSV files during analysis, one for each individual annual simulation.
ExportHourlyResults_ap = 1 - exports results of annual proposed simulation
ExportHourlyResults_ab = 1 - exports results of annual baseline simulation
ExportHourlyResults_All = 1 - exports results of all annual simulations

o ProxyServerAddress: character string: The address (i.e. “site.site:port”) of the proxy server to
be used in accessing the report generator (via the internet).

o ProxyServerCredentials: character string: Username and password credentials (i.e.
“username:password”) needed to access the internet via the proxy server (only needed for
report generation).

o ProxyServerType: character string: options include ‘Http’ (default), ‘Socks5’, ‘HttpCaching’ and
‘FtpCaching’.

o NetComLibrary: character string: network communications software library – options include
‘QT’ (new default in this version), and ‘CURL’ (only option in previous releases).

o ModelRpt_ALL (or specific model report options): boolean (0/1 – default 0): whether or not
certain CSV report files are to be written by the ruleset for each model generated during the
analysis. Such CSV files are used primarily for testing/debugging, but can be informative in

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 9

comparing certain aspects of the analysis models. The ModelRpt_ALL can be specified to
activate all defined reports, or individual report options can be specified as:
 ModelRpt_Space_InteriorLoadsElec (self explanatory)
 ModelRpt_Space_InteriorLoadsFuel

Multiple analysis options can be concatenated into the pszAnalysisOptionsCSV string, for instance, if
you wanted to perform a run with the Verbose & BypassOpenStudio_p flags activated (and all other
defaults used), then this function argument would include the string
“Verbose,1,BypassOpenStudio_p,1,”.
Searches for options in this string argument are case insensitive and if a single flag is repeated
multiple times, the value associated with its first occurrence will drive the analysis.

 pszErrorMessage is a pointer to a character string that can be populated by this function to describe
error(s) encountered during the analysis. Pass in a value of 0/NULL if no return of error messaging is
desired.

 iErrorMsgLength is an integer describing the number of characters present in the error message
character string (previous argument). Pass in a value of 0 if no return of error messaging is desired.

 bDisplayProgress is a boolean indicating whether or not to display the analysis progress dialog as the
processing is executed.

 hWnd is a HANDLE to a MS Windows application window. This argument is not currently used.

 pszResultsSummary is a pointer to a character string of length (iResultsSummaryLen) that is to be
populated with a summary of the analysis performed. If no results summary string is desired, pass NULL
for this argument.

 iResultsSummaryLen is the length of the character string (pszResultsSummary argument) to be
populated (2056 is recommended length), or 0 if no summary string desired.
Refer to information below for the CMX_PopulateResultsHeader_CECNonRes() function for information
about populating column titles for this data.

Return value is 0 if simulation successful and > 0 if errors occurred (listed below).

Call this routine once for each compliance analysis to be performed.

All path/filename arguments can be either complete or relative to the path in which the calling executable
resides.

Error return value mapping:
1 : pszBEMBasePathFile doesn't exist
2 : pszRulesetPathFile doesn't exist
3 : pszSimWeatherPath doesn't exist
4 : pszCompMgrDLLPath specified, but doesn't exist
5 : Invalid project log file name (too long)
6 : Error writing to project log file
7 : Building model input/project file not found
8 : Error reading/initializing model input/project file
9 : Errors encountered evaluating input model defaulting rules
10 : Errors encountered evaluating input model defaulting rules (multiple times)
11 : Error(s) encountered performing required data & numeric range checks

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 10

12 : Error(s) encountered checking input model for simulation compatibility
13 : Error(s) encountered checking input model for code requirements
14 : Error encountered initializing weather file locations and/or names
15 : Error creating or accessing the analysis processing directory
16 : Error generating Proposed Sizing model
17 : Error generating Proposed (final) model
18 : Error generating Standard Sizing model
19 : Error generating Standard (final) model
20 : Error initializing Standard Sizing model
21 : Error initializing Standard (final) model
22 : Analysis aborted - user chose not to overwrite SDD XML file
23 : Error: Unable to write SDD XML file
24 : Error(s) encountered simulating Proposed model
25 : Error(s) encountered simulating Standard Sizing model
26 : Error(s) encountered simulating Standard (final) model
27 : Error(s) encountered retrieving Proposed model simulation results
28 : Error(s) encountered retrieving Standard Sizing model simulation results
29 : Error(s) encountered retrieving Standard (final) model simulation results
30 : Proposed model zone(s) exceed unmet load hours limits
31 : Error initializing building model database
32 : Error loading analysis ruleset
33 : User aborted analysis via progress dialog 'Cancel' button
34 : Invalid results object types
35 : Error copying results objects from a previous model
36 : Error copying equipment sizes/flows from source model
37 : Error(s) encountered reading building model (input/project) file
38 : Error: EnergyPlus simulation engine not found.
39 : Error: Version of EnergyPlus installed not compatible with analysis.
40 : Error setting up check of weather & design day file hashes
41 : DHW simulation not successful
42 : Error encountered in creating building geometry
43 : Error encountered initializing building geometry DBIDs
44 : Error initializing Proposed model
45 : Error(s) encountered simulating Proposed Sizing model
46 : Error(s) encountered retrieving Proposed Sizing model simulation results
47 : Error encountered in generating window shades
48 : UseExcptDsgnModel flag set but no path/filename specified by UseExcptDsgnModel
49 : IDF path/filename specified by Proj:UseExcptDsgnModel not found
50 : Exceptional Design IDF specification and the Quick Analysis feature cannot both be activated
51 : Window(s) and/or Door(s) are overlapping on ExtWalls with window shades defined
52 : Analysis aborted via callback function in calling application
53 : Input model contains one or more objects with the same name
54 : CSE (recirculation DHW simulation engine) executable(s) not found
55 : CSE (recirculation DHW simulation engine) use profile file not found
56 : CSE (recirculation DHW simulation) Day Use Type (Proj:CSE_DHWUseMthd) invalid
57 : Unable to copy DHW Use/Load Profile CSE include file into processing directory
58 : Unable to open/delete/write simulation input (.cse) file
59 : Error writing simulation input (.cse) file

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 11

60 : Unable to open/delete/write simulation weather file
61 : Error copying simulation weather file to processing directory
62 : Unable to open/delete/write simulation output file (.csv or .rep)
63 : Error evaluating CSE_SimulationPrep rules
64 : Unable to open/delete/write CSE include file
65 : Error copying simulation weather file to processing directory
66 : Analysis aborted - user chose to abort due to compliance reporting issue(s)

(return values in the range greater than 100 describe issues encountered during/by simulation)
101-110 describe issues not specific to any individual run:
101 : User aborted analysis
102 : Simulation processing path not valid
103 : Simulation executable path not valid
104 : Invalid number of concurrent simulations (max = 10)
105 : Invalid combination of unique model & quick simulations (max 2 models when performing quick runs)
111-310 describe issues with initializing simulation inputs (SimIdx = 0-9):
111 + (SimIdx*10) : SDD XML simulation input file not found
112 + (SimIdx*10) : Simulation weather file not found
113 + (SimIdx*10) : Simulation error output path/file not valid
114 + (SimIdx*10) : Invalid simulation input data
311-510 describe errors encountered in OpenStudio processing (SimIdx = 0-9):
311 + (SimIdx*10) : Error encountered in OpenStudio loading SDD XML file
312 + (SimIdx*10) : Error encountered in OpenStudio saving model to OSM file
313 + (SimIdx*10) : Unable to locate EnergyPlus simulation SQL output file
314 + (SimIdx*10) : OpenStudio Model not valid following simulation
315 + (SimIdx*10) : OpenStudio Facility not valid following simulation
316 + (SimIdx*10) : Error creating OpenStudio Model object
316 + (SimIdx*10) : Error encountered in OpenStudio saving (forward translated) IDF file
511-610 describe errors encountered in EnergyPlus simulation (SimIdx = 0-9):
511 + (SimIdx*5) : Fatal error(s) occurred in EnergyPlus simulation
512 + (SimIdx*5) : EnergyPlus simulation did not complete successfully

int CMX_PerformAnalysisCB_NonRes(const char* pszBEMBasePathFile,

 const char* pszRulesetPathFile, const char* pszSimWeatherPath,

 const char* pszCompMgrDLLPath, const char* pszDHWWeatherPath,

 const char* pszProcessingPath, const char* pszModelPathFile,

 const char* pszLogPathFile, const char* pszUIVersionString,

 bool bLoadModelFile, const char* pszAnalysisOptionsCSV,

char* pszErrorMessage, int iErrorMsgLength,

bool bDisplayProgress,

char* pszResultsSummary, int iResultsSummaryLen,

PAnalysisProgressCallbackFunc pAnalProgCallbackFunc);

 // typedef int (__cdecl *PCMX_PerformAnalysisCB_NonRes)(const char*,

// const char*, const char*, const char*,

// const char*, const char*, const char*,

// const char*, const char*, bool,

// const char*, char*, int, bool, char*, int,

// PAnalysisProgressCallbackFunc);

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 12

// _CMX_PerformAnalysisCB_NonRes

This is an alternative compliance analysis routine as the one listed above (CMX_PerformAnalysis_CECNonRes).
The function arguments are identical to the above routine with the exception of HWND* removed and a new
final argument which is a pointer to a callback function. The return value is also the same as above.

This callback function referenced by the final function argument is called each time the analysis progress is
checked/reported, enabling calling applications to monitor analysis progress and abort analysis prior to
completion without using the analysis progress dialog available in the compliance engine.

where:

 (refer to the previous routine for information on all arguments prior to pAnalProgCallbackFunc)

 pAnalProgCallbackFunc is a pointer to a callback function declared as:
 long (CALLBACK* PAnalysisProgressCallbackFunc)(long lProgressID,

 long lPercent)
where:
 lProgressID encodes several settings describing the current stage of analysis (see below), and
 lPercent which indicates the percent progress (0-100)
A return value of 0 from the callback function will cause analysis to continue and a return value > 0 will
cause the analysis to be aborted.

The following source code describes how the lProgressID argument can be decoded to describe the current
analysis stage.
// 2,147,483,647 - max long int

// ABB,CCC,CDD - compliance analysis

#define BCM_NRP_AMult 100000000

#define BCM_NRP_BMult 1000000

#define BCM_NRP_CMult 100

#define BCM_NRP_EMult 10000

#define BCM_NRP_ComplianceProgressID(lAnalType, lAnalStep, lModels, lSimProg)

(long) ((lAnalType * BCM_NRP_AMult) + (lAnalStep * BCM_NRP_BMult) +

 (lModels * BCM_NRP_CMult) + lSimProg)

// A: analysis type

 #define BCM_NRP_Type_Comp 0 // 0-compliance

 #define BCM_NRP_Type_Batch 1 // 1-batch processing

 #define BCM_NRP_Type(lNRP) (long) (lNRP / BCM_NRP_AMult)

 #define BCM_NRP_TypeIsComp(lNRP)

 (long) (BCM_NRP_Type(lNRP) == BCM_NRP_Type_Comp ? 1 : 0)

 #define BCM_NRP_TypeIsBatch(lNRP)

 (long) (BCM_NRP_Type(lNRP) == BCM_NRP_Type_Batch ? 1 : 0)

// B: analysis step - valid range 0-99

 #define BCM_NRP_Step_None 0 // 0-blank

 #define BCM_NRP_Step_Init 1 // 1-Initialization

 #define BCM_NRP_Step_Read 2 // 2-Read/Parse Input

 #define BCM_NRP_Step_MPrep 3 // 3-Preparing Model(s)

 #define BCM_NRP_Step_MTrans 4 // 4-Translating Model(s)

 #define BCM_NRP_Step_MSim 5 // 5-Simulating Model(s)

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 13

 #define BCM_NRP_Step_MSimRes 6 // 6-Simulation Results

 #define BCM_NRP_Step_Store 7 // 7-Store Model & Result

 #define BCM_NRP_Step_Report 8 // 8-Report Generation

 #define BCM_NRP_Step_Done 9 // 9-Completed

 #define BCM_NRP_Step(lNRP) (long) ((lNRP - ((lNRP / BCM_NRP_AMult) *

 BCM_NRP_AMult)) / BCM_NRP_BMult)

// C: bitwise flags for up to 13 individual models

 // 0 - none

 // 0 0000 0000 0001 - u / user input model (not used in compliance runs)

 // 0 0000 0000 0010 - zp / sizing proposed model

 // 0 0000 0000 0100 - zb / sizing baseline model

 // 0 0000 0000 1000 - ap / annual proposed model

 // 0 0000 0001 0000 - ab / annual baseline model

 #define BCM_NRP_Model(lNRP) (long) ((lNRP - ((lNRP / BCM_NRP_BMult) *

 BCM_NRP_BMult)) / BCM_NRP_CMult)

 // int BCM_NRP_NumModels(int iModels) - defined in .cpp

 // int BCM_NRP_NumProgressModels(long lNRP) - defined in .cpp

 #define BCM_NRP_Model_None 0 // 0-none

 // generic models 1-13

 #define BCM_NRP_Model_1 1

 #define BCM_NRP_Model_2 2

 #define BCM_NRP_Model_3 4

 #define BCM_NRP_Model_4 8

 #define BCM_NRP_Model_5 16

 #define BCM_NRP_Model_6 32

 #define BCM_NRP_Model_7 64

 #define BCM_NRP_Model_8 128

 #define BCM_NRP_Model_9 256

 #define BCM_NRP_Model_10 512

 #define BCM_NRP_Model_11 1024

 #define BCM_NRP_Model_12 2048

 #define BCM_NRP_Model_13 4096

 // model names from CA non-res rules

 #define BCM_NRP_Model_u 1 // user model

 #define BCM_NRP_Model_zp 2 // proposed sizing

 #define BCM_NRP_Model_zb 4 // baseline sizing

 #define BCM_NRP_Model_ap 8 // proposed annual

 #define BCM_NRP_Model_ab 16 // baseline annual

Mid-simulation progress described below is a placeholder for future progress reporting. These settings are not
yet used in the compliance engine.
// D: simulation progress - valid range 0-99

 #define BCM_NRP_Prog(lNRP) (long) (lNRP % BCM_NRP_CMult)

 #define BCM_NRP_Prog_None 0 // blank

 #define BCM_NRP_Prog_Init 1 // Initialization

 #define BCM_NRP_Prog_Warmup 2 // Warmup

 #define BCM_NRP_Prog_Jan 3 // Jan

 #define BCM_NRP_Prog_Feb 4 // Feb

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 14

 #define BCM_NRP_Prog_Mar 5 // Mar

 #define BCM_NRP_Prog_Apr 6 // Apr

 #define BCM_NRP_Prog_May 7 // May

 #define BCM_NRP_Prog_Jun 8 // Jun

 #define BCM_NRP_Prog_Jul 9 // Jul

 #define BCM_NRP_Prog_Aug 10 // Aug

 #define BCM_NRP_Prog_Sep 11 // Sep

 #define BCM_NRP_Prog_Oct 12 // Oct

 #define BCM_NRP_Prog_Nov 13 // Nov

 #define BCM_NRP_Prog_Dec 14 // Dec

 #define BCM_NRP_Prog_Rpt 15 // Reporting

void CMX_GenerateReport_Proxy_CEC(const char* pszXMLResultsPathFile,

 const char* pszCACertPath, const char* pszReportName,

 const char* pszAuthToken1, const char* pszAuthToken2,

 const char* pszSignature, const char* pszPublicKey,

 const char* pszProxyAddress, const char* pszProxyCredentials,

 const char* pszDebugBool, bool bVerbose, bool bSilent,

const char* pszCompRptID, const char* pszRptGetServer,

const char* pszRptGenApp, const char* pszRptGenService,

const char* pszSecKeyRLName, const char* pszOutputPathFile,

const char* pszProxyType, const char* pszNetComLibrary);

// typedef int (__cdecl *PCMX_GenerateReport_Proxy_CEC(const char*,

// const char*, const char*, const char*, const char*,

// const char*, const char*, const char*, const char*,

// const char*, bool, bool, const char*, const char*,

// const char*, const char*, const char*, const char*,

// const char*, const char*);

// _CMX_GenerateReport_Proxy_CEC

where:

 pszXMLResultsPathFile is a null terminated string containing the path and filename of the analysis
results XML file. This is typically: <Project file directory>\<project file name> - AnalysisResults.xml

 pszCACertPath is a null terminated string containing the path (only) of the CA cert bundle (curl-ca-
bundle.crt) used to verify server certificates. For CBECC-Res, this file is distributed in the main program
directory.

 pszReportName is a null terminated string containing the name of the report to be generated. Valid
report names currently include:
 “NRCC_PRF_01” (2013 Certificate of Compliance - Nonresidential Perf…)
 “NRCC_PRF_0116” (2016 Certificate of Compliance - Nonresidential Perf…)
 “NRCC_STD_0116” (2016 Compliance report describing Standard Design model)

 pszAuthToken1 is a null terminated string that, combined with AuthToken2, identifies the calling
application. This argument is set to “CBECC-Com” for CBECC-Com and may vary for other certified
products.

 pszAuthToken2 is a null terminated string that, combined with AuthToken1, identifies the calling
application version. This argument is currently set to “3d” for CBECC-Com 2013 analysis (based on
release of v3d (3995) Apr-2016) and “2” for 2016.2.0, but will change with each major software release.

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 15

 pszSignature is a null terminated string containing the base-64 ASCII-encoded signature used to sign
request data. Signature processing is not yet implemented, so for the time being the string “none”
should be supplied for this argument.

 pszPublicKey is a null terminated string containing the base-64 ASCII-encoded public key used to sign
request data. Signature processing is not yet implemented, so for the time being the string “none”
should be supplied for this argument.

 pszProxyAddress is a null terminated string containing the address (i.e. “site.site:port”) of the proxy
server to be used in accessing the report generator (via the internet). If no proxy server is needed/used
for internet access, then pass NULL for this argument.

 pszProxyCredentials is a null terminated string containing the username and password credentials (i.e.
“username:password”) needed to access the internet via the proxy server. If no proxy server is
needed/used for internet access or if no username/password credentials are needed in conjunction with
the proxy server, then pass NULL for this argument.

 pszDebugBool is a null terminated string containing either the word “true” or “false”. Passing “true”
(the current default) causes the report generator to activate debugging features.

 bVerbose is a boolean flag (not in the form of a character string) indicating whether verbose
information should be written to the project processing log file.

 bSilent is a boolean flag (not in the form of a character string) indicating whether or not dialog boxes
are permitted to be presented during the report generation. One example is a dialog indicating that the
file needing to be written to contain the compliance report cannot be written to, prompting the user to
close the file in another application it is opened in or change the file permissions so that the file can be
re-written. A value of ‘1’ will prevent user prompts and issues such as files unable to be written may
cause the report generation to be aborted.

 pszCompRptID is a null terminated string containing the compliance report ID, currently specified as
“BEES”.

 pszRptGetServer is a null terminated string containing the compliance report generator server name,
currently specified as “t24docs.com”.

 pszRptGenApp is a null terminated string containing the compliance report generator application,
currently specified as “ReportGeneratorCom”.

 pszRptGenService is a null terminated string containing the compliance report generator service,
currently specified as “ReportingService.svc”.

 pszSecKeyRLName is a null terminated string containing the compliance report security key rulelist
name, currently specified as “rl_SECURITYKEYS”.

 pszOutputPathFile is a null terminated string containing the path and filename of the file to store the
compliance report to. If not specified, then the default output file will be used:
 “<analysis results filename>-BEES.PDF” (or .XML, depending on the … argument)

 pszProxyType is a null terminated string describing the type of proxy server. Options include ‘Http’
(default), ‘Socks5’, ‘HttpCaching’ and ‘FtpCaching’.

 pszNetComLibrary is a null terminated string indicating which network communication library to use.
Default option is “QT”, and the only other option is “CURL” (previous default).

Error return value mapping:

1 : XML file not found
2 : CACert file not found

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 16

3 : Error opening and/or reading the analysis results XML file
4 : Error allocating memory for XML file storage
5 : User chose not to overwrite output report file
6 : Error opening report output file
7 : Error reading analysis results XML file
8 : Error reading analysis results XML file
9 : Error initializing CURL (curl_easy_init() returned NULL)
10 : Report generation processing error in send request
11 : Report generation processing error in result retrieval
12 : No Report Name specified
13 : Missing or invalid PDf Only boolean string (must be 'true' or 'false' (case insensitive))
14 : Missing or invalid report generation debug boolean string (must be 'true' or 'false' (case insensitive))
15 : Missing or invalid AuthToken1 string
16 : Missing or invalid AuthToken2 string
17 : Missing or invalid Signature string
18 : Missing or invalid PublicKey string
19 : Error opening output file following report generation
20 : Error reading data from output file following report generation
21 : PDF report contains XML data - likely error messages from web server
22 : XML Path not specified
23 : CACert path not specified
24 : CACertPath not a valid or found directory
25 : Error converting results file signature to hexidecimal

int CMX_PopulateResultsHeader_CECNonRes(char* pszHdr1, int iHdr1Len,

char* pszHdr2, int iHdr2Len, char* pszHdr3, int iHdr3Len);

 // typedef int (__cdecl *PCMX_PopulateResultsHeader_CECNonRes)

// (char*, int, char*, int, char*, int);

// _CMX_ PopulateResultsHeader_CECNonRes

where:

 pszHdr1, pszHdr2 & pszHdr3 are pointers to character string of length iHdr1/2/3Len that are to be
populated with column labels for analysis results summaries returned via the final two arguments of the
CMX_PerformAnalysis_CECNonRes() function.

 iHdr1Len, iHdr2Len & iHdr3Len are the lengths of the character string arguments to be populated.
Current recommended label string lengths are 512, 1024 & 1536, respectively

Return value is 0 if all header strings are populated successfully and a value of 1-3 if population of one of the
three header strings is not successful.

int CMX_GetDataString(char* sReturnStr, int iRetStrLen, const char* pszCompParam,

const char* pszCompName, BOOL bAddCommas,

int iPrecision, const char* pszDefault);

 // typedef int (__cdecl *PCMX_GetDataString)(char*, int, const char*,

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 17

// const char*, BOOL, int, const char*);

// _CMX_GetDataString

where:

 sReturnStr is a character string buffer to be populated with data from the building model.

 iRetStrLen is the number of characters allocated in the sReturnStr buffer. The returned string will be
null-terminated, so the maximum number of characters written to sReturnStr will be (iRetStrLen-1).

 pszCompParam is a null-terminated string identifying the model object and property to return a string
representation of. This argument can reference properties of any type in the data model (float, integer,
object reference, enumeration or string). The object name and property name are separated by a colon,
so this argument would contain ‘Proj: CondFloorArea’ to return a string-representation of the
CondFloorArea property of the Proj (Project) object.

 pszCompName is a null terminated string containing the name of the object for which the
object/property is to be returned. If there is only a single object of this type in the project (as is the case
for Proj, EUseSummary and some other object types), then this argument can/should be set to NULL. If
this argument is NULL for objects where multiple are present in the building model, then the property
data for the “currently active” object of that type will be returned (not advised).

 bAddCommas is a BOOLean indicating whether or not commas (or related Windows Locale-based
numeric separators) are to be included in the returned string. This argument is only referenced when
returning string representations of integer or float object properties.

 iPrecision is an integer indicating the decimal precision to be used when populating the return string of
float properties. Ignored for non-float properties.

 pszDefault is a null-terminated string containing the desired return string in the event the
Object:Property being retrieved is not defined in the building model.

Return value is 0 if data retrieval is successful and > 0 if errors occurred.
 <error return value info to be supplied at a later date>

Call this routine each time string data is to be retrieved from the building model.

int CMX_GetDataInteger(long* pReturnInt, const char* pszCompParam,

const char* pszCompName, long lDefault);

 // typedef int (__cdecl *PCMX_GetDataInteger)(long*, const char*,

// const char*, long);

// _CMX_GetDataInteger

where:

 pReturnInt is a pointer to a (32-bit) integer to be populated with data from the building model.

 pszCompParam is a null-terminated string identifying the model object and property to return the value
of. This argument can only reference properties of integer or enumeration types in the data model. The
object name and property name are separated by a colon in this string argument.

 pszCompName is a null terminated string containing the name of the object for which the
object/property is to be returned. If there is only a single object of this type in the project (as is the case
for Proj, EUseSummary and some other object types), then this argument can/should be set to NULL. If
this argument is NULL for objects where multiple are present in the building model, then the property
data for the “currently active” object of that type will be returned (not advised).

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 18

 lDefault is a 32-bit integer value which will be returned (via the pReturnInt argument) in the event the
Object:Property being retrieved is not defined in the building model.

Return value is 0 if data retrieval is successful and > 0 if errors occurred.
 <error return value info to be supplied at a later date>

Call this routine each time integer data is to be retrieved from the building model.

int CMX_GetDataFloat(float* pReturnFlt, const char* pszCompParam,

const char* pszCompName, float fDefault);

 // typedef int (__cdecl *PCMX_GetDataFloat)(float*, const char*,

// const char*, float);

// _CMX_GetDataFloat

where:

 pReturnFlt is a pointer to a (32-bit) float to be populated with data from the building model.

 pszCompParam is a null-terminated string identifying the model object and property to return the value
of. This argument can reference properties of float, integer, enumeration or object reference types in
the data model (returning a float value for an object reference property returns a 1-based index of the
referenced object (among all objects of that type)). The object name and property name are separated
by a colon in this string argument.

 pszCompName is a null terminated string containing the name of the object for which the
object/property is to be returned. If there is only a single object of this type in the project (as is the case
for Proj, EUseSummary and some other object types), then this argument can/should be set to NULL. If
this argument is NULL for objects where multiple are present in the building model, then the property
data for the “currently active” object of that type will be returned (not advised).

 fDefault is a 32-bit float value which will be returned (via the pReturnFlt argument) in the event the
Object:Property being retrieved is not defined in the building model.

Return value is 0 if data retrieval is successful and > 0 if errors occurred.
 <error return value info to be supplied at a later date>

Call this routine each time float data is to be retrieved from the building model.

int CMX_XXX(<type> argument, …);

 // typedef int (__cdecl *PCMX_XXX)(<type>, …);

// ?CMX_XXX@@YAHPAMPBD1M@Z

where:

 pXXX is a xxx.

void ExitBEMProcAndCmpMgrDLLs();

BEMCmpMgr (CEC Compliance Manager) DLL Documentation - Commercial 19

 // typedef void (__cdecl *PExitBEMProcAndCmpMgrDLLs)();

 // _ExitBEMProcAndCmpMgrDLLs

Call this routine only once (following all simulations) immediately prior to unloading the DLLs.

